Vehicle license plate recognition using visual attention model and deep learning

نویسندگان

  • Di Zang
  • Zhenliang Chai
  • Junqi Zhang
  • Dongdong Zhang
  • Jiujun Cheng
چکیده

A vehicle’s license plate is the unique feature by which to identify each individual vehicle. As an important research area of an intelligent transportation system, the recognition of vehicle license plates has been investigated for some decades. An approach based on a visual attention model and deep learning is proposed to handle the problem of Chinese car license plate recognition for traffic videos. We first use a modified visual attention model to locate the license plate, and then the license plate is segmented into seven blocks using a projection method. Two classifiers, which combine the advantages of convolutional neural network-based feature learning and support vector machine for multichannel processing, are designed to recognize Chinese characters, numbers, and alphabet letters, respectively. Experimental results demonstrate that the presented method can achieve high recognition accuracy and works robustly even under the conditions of illumination change and noise contamination. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI.24.3.033001]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Research on Vehicle Identification based on Deep Learning

In order to confirm the domestic license plate damage, fake brand car and clone car, the vehicle specific information mainly rely on artificial experience for recognition, as well as the vehicle manufacturers to produce more models not effectively identify a problem on issues such as the introduction of models, deep learning theory, puts forward a specific vehicle sub deep learning does not dep...

متن کامل

License Plate location Determination by Using Case-Based Reasoning

The license plate recognition system is part of the intelligent transportation system. In the intelligent transportation system, the vehicle image is used as the system input. The first step is to improve the image, after the edge detection, a series of morphological operations are performed to identify the plaque. The main purpose of this research was to increase the importance of plate re...

متن کامل

Automatic License Plate Detection Using Deep Learning Techniques

Automatic License Plate Recognition (ALPR) systems capture a vehicle‟s license plate and recognize the license number and other required information from the captured image. ALPR systems have numbers of significant applications: law enforcement, public safety agencies, toll gate systems, etc. The goal of these systems is to recognize the characters and state on the license plate with high accur...

متن کامل

Iranian Vehicle License Plate Detection based on Cascade Classifier

A license plate recognition system contains three main steps: plate detection, character segmentation and character recognition. The first and foremost step of this system is the plate detection stage where the plate is located from the input image. In this paper an effective plate detection approach is developed based on a cascade classifier. A two-phase training approach is proposed to enhanc...

متن کامل

Local Tiled Deep Networks for Recognition of Vehicle Make and Model

Vehicle analysis involves license-plate recognition (LPR), vehicle-type classification (VTC), and vehicle make and model recognition (MMR). Among these tasks, MMR plays an important complementary role in respect to LPR. In this paper, we propose a novel framework for MMR using local tiled deep networks. The frontal views of vehicle images are first extracted and fed into the local tiled deep ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015